My Appie

Find traditional instrumental music
Jump to: navigation, search



My Appie  Click on the tune title to see or modify My Appie's annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Browse/:My Appie
Query the Archive
 Theme code Index    554 512
 Also known as    Eppie Adair
 Composer/Core Source    
 Region    Scotland
 Genre/Style    Scottish
 Meter/Rhythm    Air/Lament/Listening Piece
 Key/Tonic of    G
 Accidental    2 flats
 Mode    Aeolian (minor)
 Time signature    3/8
 History    
 Structure    AABBCCDD
 Editor/Compiler    James Oswald
 Book/Manuscript title    Caledonian Pocket Companion Book 11
 Tune and/or Page number    p. 129
 Year of publication/Date of MS    c. 1760
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   





X:1 T:My Appie M:3/8 L:1/8 R:Air Q:"Slow" B:Oswald – Caledonian Pocket Companion, Book 11 (1760, p. 129) Z:AK/Fiddler’s Companion K:Gmin A>c|d4c2|d2G2A2|c2 (dc)(BA)|c2F2A2|d4 c2| d2g2f2|d3c T(B>A)|G4::d2|g>a b2a2|g2d2=e2|f>g a2g2| f2F2d2|g>a b2a2|g>f d2c2|d2g2^f2|g4d2|g>a b2a2| g2d2=e2|f>g a2g2|(fd)(cA)(GF)|B4 c2|(d2g2)f2| d3c T(B>A)|G4::B>c|d2 (GA)(Bc)|d2G2 (fd)|c2 (FG)(AB)| c2F2 (f=e)|d2 (GA)(Bc)|(db)(ag)(^fg)|d3c TB>A|G4:| |:(ba)|(gf) d2 (ba)|(gf)d2 (ag)|(fd) c2 (ag)|(fd) c2 (ba)|(gf) d2c2| B3 (3cBc|d2b2a2|g4 (ba)|(gf) d2 (ba)|g2 (df)(=eg)|(fg)(ag)(fd)| (cd)(cA) (GF)|(Bd)(c_e)(dg)|(^f2g2) (c>_e)|d3c T(B>A)|G4:|]

X:1 T:Eppie Adair M:3/4 L:1/8 R:Air B:Johnson - Scots Musical Museum, vol. 3 (1788, No. 281, p. 290) Z:AK/Fiddler's Companion K:Emin (F>A)|B4 A2|B2E2F2|A2 (BA) GF|A2D2F2|B2B2A2| B2e2d2|B3A (GF)|E4||B2|e>f g2f2|e2B2 ^c2| d>e f2e2|d2A2B2|e>f g2f2|e>d B2A2| B2 e2^d2|e4 B2|e>f g2f2|e2B2^c2|d>e f2e2| (dB) (AF) ED|G2G2A2|B2e2d2|B3A GF|E6||

X:1 T:Eppie Adair M:3/4 L:1/8 Q:"Slow" B:Alexander Robertson - "Caledonian Museum" (c. 1825, p. 44) Z:AK/Fiddler's Companion K:Emin GA|TB4 A2|B2E2F2|AS2 (BA)(GF)|A2D2F2|TB2B2A2\B2e2d2| TB3A (GF)|E4::B2|Te>f g2f2|e2B2^c2|T(d>e) f2e2|d2A2B2| e>f (g2f2)|(e>d) B2A2|B2 (e2^d2)|e4 B2|Te>f g2f2|e2B2^c2| d>e Tf3e|dBAFED|G2G2A2|B2e2d2|{c}B3A (GF)|E4:|]

⧼⧽